Dynamics of Siegel Rational Maps with Prescribed Combinatorics

نویسنده

  • GAOFEI ZHANG
چکیده

We extend Thurston’s combinatorial criterion for postcritically finite rational maps to a class of rational maps with bounded type Siegel disks. The combinatorial characterization of this class of Siegel rational maps plays a special role in the study of general Siegel rational maps. As one of the applications, we prove that for any quadratic rational map with a bounded type Siegel disk, the boundary of the Siegel disk is a quasi-circle which passes through one or both of the critical points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination laws for scaling exponents and relation to the geometry of renormalization operators

Renormalization group has become a standard tool for describing universal properties of different routes to chaos – period-doubling in unimodal maps, quasiperiodic transitions in circle maps, dynamics on the boundaries of Siegel disks, destruction of invariant circles of area-preserving twist maps, and others. The universal scaling exponents for each route are related to the properties of the c...

متن کامل

All Bounded Type Siegel Disks of Rational Maps Are Quasi-disks

We prove that every bounded type Siegel disk of a rational map must be a quasi-disk with at least one critical point on its boundary. This verifies Douady-Sullivan’s conjecture in the case of bounded type rotation numbers.

متن کامل

A Decomposition Theorem for Herman Maps

In 1980s, Thurston established a topological characterization theorem for postcritically finite rational maps. In this paper, a decomposition theorem for a class of postcritically infinite branched covering termed ‘Herman map’ is developed. It’s shown that every Herman map can be decomposed along a stable multicurve into finitely many Siegel maps and Thurston maps, such that the combinations an...

متن کامل

ANALYTIC COMBINATORICS OF CHORD AND HYPERCHORD DIAGRAMS WITH k CROSSINGS

Using methods from Analytic Combinatorics, we study the families of perfect matchings, partitions, chord diagrams, and hyperchord diagrams on a disk with a prescribed number of crossings. For each family, we express the generating function of the configurations with exactly k crossings as a rational function of the generating function of crossing-free configurations. Using these expressions, we...

متن کامل

Automorphisms of Rational Manifolds of Positive Entropy with Siegel Disks

Using McMullen’s rational surface automorphisms, we construct projective rational manifolds of higher dimension admitting automorphisms of positive entropy with arbitrarily high number of Siegel disks and those with exactly one Siegel disk.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008